
165

C H A P T E R 7

USING CLASS MODULES TO CREATE
OBJECTS

Class modules are used to create objects. There are many reasons for you
as a developer to create your own objects, including the following:

n To encapsulate VBA and Windows API code to make it trans-
portable and easy to use and reuse, as shown in Chapter 12,
“Understanding and Using Windows API Calls”

n To trap events
n To raise events
n To create your own objects and object models

In this chapter, we assume you are already familiar with writing VBA code
to manipulate the objects in Excel and are familiar with the Excel object
model that defines the relationships among those objects. We also assume
you are familiar with object properties, methods, and events. If you have
written code in the ThisWorkbook module, any of the modules behind
worksheets or charts, or the module associated with a UserForm, you have
already worked with class modules. One of the key features of these mod-
ules, like all class modules, is the ability to trap and respond to events.

The goal of this chapter is to show you how to create your own objects.
We begin by explaining how to create a single custom object and then show
how you can create a collection containing multiple instances of the object.
We continue with a demonstration of how to trap and raise events within
your classes.

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 165

166 Chapter 7 Using Class Modules to Create Objects

Creating Objects

Say we want to develop code to analyze a single cell in a worksheet and cat-
egorize the entry in that cell as one of the following:

n Empty
n Containing a label
n Containing a constant numeric value
n Containing a formula

This can be readily accomplished by creating a new object with the appropri-
ate properties and methods. Our new object will be a Cell object. It will have
an Analyze method that determines the cell type and sets the CellType prop-
erty to a numeric value that can be used in our code. We will also have a
DescriptiveCellType property so we can display the cell type as text.

Listing 7-1 shows the CCell class module code. This class module is used
to create a custom Cell object representing the specified cell, analyze the con-
tents of the cell, and return the type of the cell as a user-friendly text string.

Listing 7-1 The CCell Class Module

Option Explicit

Public Enum anlCellType

anlCellTypeEmpty

anlCellTypeLabel

anlCellTypeConstant

anlCellTypeFormula

End Enum

Private muCellType As anlCellType

Private mrngCell As Excel.Range

Property Set Cell(ByRef rngCell As Excel.Range)

Set mrngCell = rngCell

End Property

Property Get Cell() As Excel.Range

Set Cell = mrngCell

End Property

Property Get CellType() As anlCellType

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 166

Creating Objects 167

CellType = muCellType

End Property

Property Get DescriptiveCellType() As String

Select Case muCellType

Case anlCellTypeEmpty

DescriptiveCellType = “Empty”

Case anlCellTypeFormula

DescriptiveCellType = “Formula”

Case anlCellTypeConstant

DescriptiveCellType = “Constant”

Case anlCellTypeLabel

DescriptiveCellType = “Label”

End Select

End Property

Public Sub Analyze()

If IsEmpty(mrngCell) Then

muCellType = anlCellTypeEmpty

ElseIf mrngCell.HasFormula Then

muCellType = anlCellTypeFormula

ElseIf IsNumeric(mrngCell.Formula) Then

muCellType = anlCellTypeConstant

Else

muCellType = anlCellTypeLabel

End If

End Sub

The CCell class module contains a public enumeration with four members,
each of which represents a cell type. By default, the enumeration members
are assigned values from zero to three. The enumeration member names
help make our code more readable and easier to maintain. The enumera-
tion member values are translated into user-friendly text by the
DescriptiveCellType property.

NOTE The VBA IsNumeric function used in Listing 7-1 considers a label entry
such as 123 to be numeric. IsNumeric also considers a number entered into a
cell formatted as Text to be a number. As both these cell types can be referenced
as numeric values in formulas, this has been taken to be the correct result. If you
prefer to consider these cells as label entries you can use
WorksheetFunction.IsNumber instead of IsNumeric.

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 167

168 Chapter 7 Using Class Modules to Create Objects

Listing 7-2 shows the AnalyzeActiveCell procedure. This procedure is
contained in the standard module MEntryPoints.

Listing 7-2 The AnalyzeActiveCell Procedure

Public Sub AnalyzeActiveCell()

Dim clsCell As CCell

‘ Create new instance of Cell object

Set clsCell = New CCell

‘ Determine cell type and display it

Set clsCell.Cell = Application.ActiveCell

clsCell.Analyze

MsgBox clsCell.DescriptiveCellType

End Sub

If you select a cell on a worksheet and run the AnalyzeActiveCell proce-
dure it creates a new instance of the CCell class that it stores in the clsCell
object variable. The procedure then assigns the active cell to the Cell prop-
erty of this Cell object, executes its Analyze method, and displays the result
of its DescriptiveCellType property. This code is contained in the
Analysis1.xls workbook in the \Concepts\Ch07 – Using Class Modules to
Create Objects folder on the CD that accompanies this book.

Class Module Structure
A class module can be thought of as a template for an object. It defines
the methods and properties of the object. Any public subroutines or func-
tions in the class module become methods of the object, and any public
variables or property procedures become properties of the object. You can
use the class module to create as many instances of the object as you
require.

Property Procedures
Rather than rely on public variables to define properties it is better prac-
tice to use property procedures. These give you more control over how
properties are assigned values and how they return values. Property

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 168

Creating Objects 169

procedures allow you to validate the data passed to the object and to per-
form related actions where appropriate. They also enable you to make
properties read-only or write-only if you want.

The CCell class uses two private module-level variables to store its
properties internally. muCellType holds the cell type in the form of an
anlCellType enumeration member value. mrngCell holds a reference to
the single-cell Range that an object created from the CCell class will
represent.

Property procedures control the interface between these variables and
the outside world. Property procedures come in three forms:

n Property Let—Used to assign a simple value to a property
n Property Set—Used to assign an object reference to a property
n Property Get—Used to return the simple value or object refer-

ence held by a property to the outside world

The property name presented to the outside world is the same as the name
of the property procedure. The CCell class uses Property Set Cell to
allow you to assign a Range reference to the Cell property of the Cell
object. The property procedure stores the reference in the mrngCell vari-
able. This procedure could have a validation check to ensure that only sin-
gle-cell ranges can be specified. There is a corresponding Property Get
Cell procedure that allows this property to be read.

The CCell class uses two Property Get procedures to return the cell
type as an enumeration member value or as descriptive text. These prop-
erties are read-only because they have no corresponding Property Let

procedures.

Methods
The CCell class has one method defined by the Analyze subroutine. It
determines the type of data in the cell referred to by the mrngCell vari-
able and assigns the corresponding enumeration member to the
muCellType variable. Because it is a subroutine, the Analyze method does-
n’t return a value to the outside world. If a method is created as a function
it can return a value. The Analyze method could be converted to a func-
tion that returned the text value associated with the cell type as shown in
Listing 7-3.

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 169

170 Chapter 7 Using Class Modules to Create Objects

Listing 7-3 The Analyze Method of the Cell Object

Public Function Analyze() As String

If IsEmpty(mrngCell) Then

muCellType = anlCellTypeEmpty

ElseIf mrngCell.HasFormula Then

muCellType = anlCellTypeFormula

ElseIf IsNumeric(mrngCell.Formula) Then

muCellType = anlCellTypeConstant

Else

muCellType = anlCellTypeLabel

End If

Analyze = Me.DescriptiveCellType

End Function

You could then analyze the cell and display the return value with the fol-
lowing single line of code instead of the original two lines:

MsgBox clsCell.Analyze()

Creating a Collection

Now that we have a Cell object we want to create many instances of the
object so we can analyze a worksheet or ranges of cells within a worksheet.
The easiest way to manage these new objects is to store them in a collec-
tion. VBA provides a Collection object that you can use to store objects and
data. The Collection object has four methods:

n Add
n Count
n Item
n Remove

There is no restriction on the type of data that can be stored within a
Collection object, and items with different data types can be stored in the
same Collection object. In our case, we want to be consistent and store just
Cell objects in our collection.

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 170

Creating a Collection 171

To create a new Collection, the first step is to add a new standard mod-
ule to contain global variables. This module will be called MGlobals. Next,
add the following variable declaration to the MGlobals module to declare
a global Collection object variable to hold the collection, as follows:

Public gcolCells As Collection

Now add the CreateCellsCollection procedure shown in Listing 7-4 to the
MEntryPoints module. The modified code is contained in the Analysis2.xls
workbook in the \Concepts\Ch07 – Using Class Modules to Create Objects
folder on the CD that accompanies this book.

Listing 7-4 Creating a Collection of Cell Objects

Public Sub CreateCellsCollection()

Dim clsCell As CCell

Dim rngCell As Range

‘ Create new Cells collection

Set gcolCells = New Collection

‘ Create Cell objects for each cell in Selection

For Each rngCell In Application.Selection

Set clsCell = New CCell

Set clsCell.Cell = rngCell

clsCell.Analyze

‘Add the Cell to the collection

gcolCells.Add Item:=clsCell, Key:=rngCell.Address

Next rngCell

‘ Display the number of Cell objects stored

MsgBox “Number of cells stored: “ & CStr(gcolCells.Count)

End Sub

We declare gcolCells as a public object variable so that it persists for as
long as the workbook is open and is visible to all procedures in the VBA
project. The CreateCellsCollection procedure creates a new instance of
the collection and loops through the currently selected cells, creating a
new instance of the Cell object for each cell and adding it to the collection.
The address of each cell, in A1 reference style, is used as a key to
uniquely identify it and to provide a way of accessing the Cell object later.

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 171

172 Chapter 7 Using Class Modules to Create Objects

We can loop through the objects in the collection using a For...Each
loop or we can access individual Cell objects by their position in the col-
lection or by using the key value. Because the Item method is the default
method for the collection, we can use code like the following to access a
specific Cell object:

Set clsCell = gcolCells(3)

Set clsCell = gcolCells(“A3”)

Creating a Collection Object
The collection we have established is easy to use, but it lacks some features
we would like to have. As it stands, there is no control over the type of
objects that can be added to the collection. We would also like to add a
method to the collection that enables us to highlight cells of the same type
and another method to remove the highlights.

We first add two new methods to the CCell class module. The
Highlight method adds color to the Cell object according to the CellType.
The UnHighlight method removes the color. The new code is shown in
Listing 7-5.

Note that we are applying the principle of encapsulation. All the code
that relates to the Cell object is contained in the CCell class module, not
in any other module. Doing this ensures that the code can be easily found
and maintained and means that it can be easily transported from one proj-
ect to another.

Listing 7-5 New Code for the CCell Class Module

Public Sub Highlight()

Cell.Interior.ColorIndex = Choose(muCellType + 1, 5, 6, 7, 8)

End Sub

Public Sub UnHighlight()

Cell.Interior.ColorIndex = xlNone

End Sub

We can now create a new class module named CCells to contain the Cells
collection, as shown in Listing 7-6. The complete code is contained in the
Analysis3.xls workbook in the \Concepts\Ch07 – Using Class Modules to
Create Objects folder on the CD that accompanies this book.

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 172

Creating a Collection 173

Listing 7-6 The CCells ClassModule

Option Explicit

Private mcolCells As Collection

Property Get Count() As Long

Count = mcolCells.Count

End Property

Property Get Item(ByVal vID As Variant) As CCell

Set Item = mcolCells(vID)

End Property

Private Sub Class_Initialize()

Set mcolCells = New Collection

End Sub

Public Sub Add(ByRef rngCell As Range)

Dim clsCell As CCell

Set clsCell = New CCell

Set clsCell.Cell = rngCell

clsCell.Analyze

mcolCells.Add Item:=clsCell, Key:=rngCell.Address

End Sub

Public Sub Highlight(ByVal uCellType As anlCellType)

Dim clsCell As CCell

For Each clsCell In mcolCells

If clsCell.CellType = uCellType Then

clsCell.Highlight

End If

Next clsCell

End Sub

Public Sub UnHighlight(ByVal uCellType As anlCellType)

Dim clsCell As CCell

For Each clsCell In mcolCells

If clsCell.CellType = uCellType Then

clsCell.UnHighlight

End If

Next clsCell

End Sub

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 173

174 Chapter 7 Using Class Modules to Create Objects

The mcolCells Collection object variable is declared as a private, mod-
ule-level variable and is instantiated in the Initialize procedure of the class
module. Since the Collection object is now hidden from the outside world,
we need to write our own Add method for it. We also have created Item
and Count property procedures to emulate the corresponding properties
of the collection. The input argument for the Item property is declared as
a Variant data type because it can be either a numeric index or the string
key that identifies the collection member.

The Highlight method loops through each member of the collection.
If the CellType property of the Cell object is the same as the type speci-
fied by the uCellType argument, we execute the Cell object’s Highlight
method. The UnHighlight method loops through the collection and exe-
cutes the UnHighlight method of all Cell objects whose type is the same as
the type specified by the uCellType argument.

We modified the public Collection variable declaration in MGlobals to
refer to our new custom collection class as shown here:

Public gclsCells As CCells

We also modified the CreateCellsCollection procedure in the
MEntryPoints module to instantiate and populate our custom collection,
as shown in Listing 7-7.

Listing 7-7 MEntryPoints Code to Create a Cells Object Collection

Public Sub CreateCellsCollection()

Dim clsCell As CCell

Dim lIndex As Long

Dim lCount As Long

Dim rngCell As Range

Set gclsCells = New CCells

For Each rngCell In Application.ActiveSheet.UsedRange

gclsCells.Add rngCell

Next rngCell

‘ Count the number of formula cells in the collection.

For lIndex = 1 To gclsCells.Count

If gclsCells.Item(lIndex).CellType = anlCellTypeFormula Then

lCount = lCount + 1

End If

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 174

Creating a Collection 175

Next lIndex

MsgBox “Number of Formulas = “ & CStr(lCount)

End Sub

We declare gclsCells as a public object variable to contain our custom Cells
collection object. The CreateCellsCollection procedure instantiates
gclsCells and uses a For...Each loop to add all the cells in the active work-
sheet’s used range to the collection. After loading the collection, the proce-
dure counts the number of cells that contain formulas and displays the result.

The MEntryPoints module contains a ShowFormulas procedure that
can be executed to highlight and unhighlight the formula cells in the work-
sheet. Several additional variations are provided for other cell types.

This code illustrates two shortcomings of our custom collection class.
You can’t process the members of the collection in a For...Each loop. You
must use an index and the Item property instead. Also, our collection has no
default property, so you can’t shortcut the Item property using the standard
collection syntax gclsCells(1) to access a member of the collection. You must
specify the Item property explicitly in your code. We explain how to solve
these problems using Visual Basic 6 or just a text editor in the next section.

Addressing Class Collection Shortcomings
It is possible to make your custom collection class behave like a built-in col-
lection. It requires nothing more than a text editor to make the adjustments,
but first we’ll explain how to do it by setting procedure attributes using
Visual Basic 6 (VB6) to better illustrate the nature of the changes required.

Using Visual Basic 6
In VB6, unlike Visual Basic for Applications used in Excel, you can speci-
fy a property to be the default property of the class. If you declare the Item
property to be the default property, you can omit .Item when referencing
a member of the collection and use a shortcut such as gclsCells(1) instead.

If you have VB6 installed you can export the code module CCells to a
file and open that file in VB6. Place your cursor anywhere within the Item
property procedure and select Tools > Procedure Attributes from the menu
to display the Procedure Attributes dialog. Next, click the Advanced >> but-
ton and under the Advanced options select (Default) from the Procedure ID
combo box. This makes the Item property the default property for the class.

When you save your changes and import this file back into your Excel
VBA project, the attribute will be recognized even though there is no way

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 175

176 Chapter 7 Using Class Modules to Create Objects

to set attribute options within the Excel Visual Basic Editor. VB6 also
allows you to set up the special procedure shown in Listing 7-8.

Listing 7-8 Code to Allow the Collection to Be Referenced in a For...Each Loop

Public Function NewEnum() As IUnknown

Set NewEnum = mcolCells.[_NewEnum]

End Function

This procedure must be given an attribute value of 4, which you enter
directly into the Procedure ID combo box in the Procedure Attributes dia-
log. Giving the NewEnum procedure this attribute value enables a
For...Each loop to process the members of the collection. Once you have
made this addition to your class module in VB6 and saved your changes,
you can load the module back into your Excel VBA project, and once again
the changes will be recognized.

Using a Text Editor
Even without VB6 you can easily create these procedures and their attrib-
utes using a text editor such as NotePad. Export the CCells class module
to a file and open it using the text editor. Modify your code to look like the
example shown in Listing 7-9.

Listing 7-9 Viewing the Code in a Text Editor

Property Get Item(ByVal vID As Variant) As CCell

Attribute Item.VB_UserMemId = 0

Set Item = mcolCells(vID)

End Property

Public Function NewEnum() As IUnknown

Attribute NewEnum.VB_UserMemId = -4

Set NewEnum = mcolCells.[_NewEnum]

End Function

When the modified class module is imported back into your project the
Attribute lines will not be visible, but the procedures will work as expect-
ed. You can now refer to a member of the collection as gclsCells(1) and use
your custom collection class in a For...Each loop as shown in Listing 7-10.

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 176

Trapping Events 177

Listing 7-10 Referencing the Cells Collection in a For...Each Loop

For Each clsCell In gclsCells

If clsCell.CellType = anlCellTypeFormula Then

lCount = lCount + 1

End If

Next clsCell

Trapping Events

A powerful capability built into class modules is the ability to respond to
events. We want to extend our Analysis application so that when you dou-
ble-click a cell that has been analyzed it will change color to indicate the cell
type. When you right-click the cell the color will be removed. We also want
to ensure that cells are reanalyzed when they are changed so that our cor-
responding Cell objects are kept up-to-date. The code shown in this section
is contained in the Analysis4.xls workbook in the \Concepts\Ch07 – Using
Class Modules to Create Objects folder on the CD that accompanies this
book. To trap the events associated with an object you need to do two things:

n Declare a WithEvents variable of the correct object type in a class
module.

n Assign an object reference to the variable.

For the purpose of this example we confine ourselves to trapping events
associated with a single Worksheet object. You could easily substitute this
with a Workbook object if you wanted the code to apply to all the work-
sheets in a workbook. We need to create a WithEvents object variable in
the CCells class module that references the worksheet containing the Cell
objects. This WithEvents variable declaration is made at the module level
within the CCells class and looks like the following:

Private WithEvents mwksWorkSheet As Excel.Worksheet

As soon as you add this variable declaration to the CCells class module you
can select the WithEvents variable name from the drop-down menu at the
top left of the module and use the drop-down menu at the top right of the
module to see the events that can be trapped, as shown in Figure 7-1.

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 177

178 Chapter 7 Using Class Modules to Create Objects

Event names listed in bold are currently being trapped within the class, as
we see in a moment.

Selecting an event from the drop-down creates a shell for the event pro-
cedure in the module. You need to add the procedures shown in Listing 7-
11 to the CCells class module. They include a new property named
Worksheet that refers to the Worksheet object containing the Cell objects
held by the collection, as well as the code for the BeforeDoubleClick,
BeforeRightClick, and Change events.

Listing 7-11 Additions to the CCells Class Module

Property Set Worksheet(wks As Excel.Worksheet)

Set mwksWorkSheet = wks

End Property

Private Sub mwksWorkSheet_BeforeDoubleClick(_

ByVal Target As Range, Cancel As Boolean)

If Not Application.Intersect(Target, _

mwksWorkSheet.UsedRange) Is Nothing Then

Highlight mcolCells(Target.Address).CellType

Cancel = True

End If

End Sub

FIGURE 7-1 The Worksheet event procedures available in CCells

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 178

Trapping Events 179

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

Private Sub mwksWorkSheet_BeforeRightClick(_

ByVal Target As Range, Cancel As Boolean)

If Not Application.Intersect(Target, _

mwksWorkSheet.UsedRange) Is Nothing Then

UnHighlight mcolCells(Target.Address).CellType

Cancel = True

End If

End Sub

Private Sub mwksWorkSheet_Change(ByVal Target As Range)

Dim rngCell As Range

If Not Application.Intersect(Target, _

mwksWorkSheet.UsedRange) Is Nothing Then

For Each rngCell In Target.Cells

mcolCells(rngCell.Address).Analyze

Next rngCell

End If

End Sub

The CreateCellsCollection procedure in the MEntryPoints module needs
to be changed as shown in Listing 7-12. The new code assigns a reference
to the active worksheet to the Worksheet property of the Cells object so
the worksheet’s events can be trapped.

Listing 7-12 The Updated CreateCellsCollection Procedure in the MEntryPoints Module

Public Sub CreateCellsCollection()

Dim clsCell As CCell

Dim rngCell As Range

Set gclsCells = New CCells

Set gclsCells.Worksheet = ActiveSheet

For Each rngCell In ActiveSheet.UsedRange

gclsCells.Add rngCell

Next rngCell

End Sub

You can now execute the CreateCellsCollection procedure in the
MEntryPoints module to create a new collection with all the links in place
to trap the BeforeDoubleClick and BeforeRightClick events for the cells

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 179

in the worksheet. Double-clicking a cell changes the cell’s background to a
color that depends on the cell’s type. Right-clicking a cell removes the
background color.

Raising Events

Another powerful capability of class modules is the ability to raise events.
You can define your own events and trigger them in your code. Other class
modules can trap those events and respond to them. To illustrate this we
change the way our Cells collection tells the Cell objects it contains to exe-
cute their Highlight and UnHighlight methods. The Cells collection rais-
es an event that will be trapped by the Cell objects. The code shown in
this section is contained in the Analysis5.xls workbook in the
\Concepts\Ch07 – Using Class Modules to Create Objects folder on the
CD that accompanies this book. To raise an event in a class module you
need two things.

n An Event declaration at the top of the class module
n A line of code that uses RaiseEvent to cause the event to take place

The code changes shown in Listing 7-13 should be made in the CCells
class module.

Listing 7-13 Changes to the CCells Class Module to Raise an Event

Option Explicit

Public Enum anlCellType

anlCellTypeEmpty

anlCellTypeLabel

anlCellTypeConstant

anlCellTypeFormula

End Enum

Private mcolCells As Collection

Private WithEvents mwksWorkSheet As Excel.Worksheet

Event ChangeColor(uCellType As anlCellType, bColorOn As Boolean)

Public Sub Add(ByRef rngCell As Range)

Dim clsCell As CCell

180 Chapter 7 Using Class Modules to Create Objects

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 180

Raising Events 181

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

Set clsCell = New CCell

Set clsCell.Cell = rngCell

Set clsCell.Parent = Me

clsCell.Analyze

mcolCells.Add Item:=clsCell, Key:=rngCell.Address

End Sub

Private Sub mwksWorkSheet_BeforeDoubleClick(_

ByVal Target As Range, Cancel As Boolean)

If Not Application.Intersect(Target, _

mwksWorkSheet.UsedRange) Is Nothing Then

RaiseEvent ChangeColor(_

mcolCells(Target.Address).CellType, True)

Cancel = True

End If

End Sub

Private Sub mwksWorkSheet_BeforeRightClick(_

ByVal Target As Range, Cancel As Boolean)

If Not Application.Intersect(Target, _

mwksWorkSheet.UsedRange) Is Nothing Then

RaiseEvent ChangeColor(_

mcolCells(Target.Address).CellType, False)

Cancel = True

End If

End Sub

Note that we moved the anlCellType Enum declaration into the parent col-
lection class module. Now that we have created an explicit parent-child rela-
tionship between the CCells and CCell classes, any public types used by
both classes must reside in the parent class module or circular dependencies
between the classes that cannot be handled by VBA will be created.

In the declarations section of the CCells module, we declare an event
named ChangeColor that has two arguments. The first argument defines
the cell type to be changed, and the second argument is a Boolean value to
indicate whether we are turning color on or off. The BeforeDoubleClick
and BeforeRightClick event procedures have been changed to raise the
new event and pass the cell type of the target cell and the on or off value.
The Add method has been updated to set a new Parent property of the
Cell object. This property holds a reference to the Cells object. The name
reflects the relationship between the Cells object as the parent object and
the Cell object as the child object.

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 181

Trapping the event raised by the Cells object in another class module
is carried out in exactly the same way we trapped other events. We create
a WithEvents object variable and set it to reference an instance of the class
that defines and raises the event. The changes shown in Listing 7-14
should be made to the CCell class module.

Listing 7-14 Changes to the CCell Class Module to Trap the ChangeColor Event

Option Explicit

Private muCellType As anlCellType

Private mrngCell As Excel.Range

Private WithEvents mclsParent As CCells

Property Set Parent(ByRef clsCells As CCells)

Set mclsParent = clsCells

End Property

Private Sub mclsParent_ChangeColor(uCellType As anlCellType, _

bColorOn As Boolean)

If Me.CellType = uCellType Then

If bColorOn Then

Highlight

Else

UnHighlight

End If

End If

End Sub

A new module-level object variable mclsParent is declared WithEvents as
an instance of the CCells class. A reference to a Cells object is assigned to
mclsParent in the Parent Property Set procedure. When the Cells object
raises the ChangeColor event, all the Cell objects will trap it. The Cell
objects take action in response to the event if they are of the correct cell
type.

A Family Relationship Problem
Unfortunately, we introduced a problem in our application. Running the
CreateCellsCollection procedure multiple times creates a memory leak.
Normally when you overwrite an object in VBA, VBA cleans up the old

182 Chapter 7 Using Class Modules to Create Objects

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 182

Raising Events 183

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

version of the object and reclaims the memory that was used to hold it. You
can also set an object equal to Nothing to reclaim the memory used by it.
It is good practice to do this explicitly when you no longer need an object,
rather than relying on VBA to do it.

Set gclsCells = Nothing

When you create two objects that store references to each other, the sys-
tem will no longer reclaim the memory they used when they are set to new
versions or when they are set to Nothing. When analyzing the worksheet
in Analysis5.xls with 574 cells in the used range, there is a loss of about
250KB of RAM each time CreateCellsCollection is executed during an
Excel session.

NOTE If you are running Windows NT, 2000, XP, or Vista you can check the
amount of RAM currently used by Excel by pressing Ctrl+Shift+Esc to display the
Processes window in Task Manager and examining the memory usage column
for the row where the Image Name column is EXCEL.EXE.

One way to avoid this problem is to make sure you remove the cross-
references from the linked objects before the objects are removed. You can
do this by adding a method such as the Terminate method shown in Listing
7-15 to the problem classes, in our case the CCell class.

Listing 7-15 The Terminate Method in the CCell Class Module

Public Sub Terminate()

Set mclsParent = Nothing

End Sub

The code in Listing 7-16 is added to the CCells class module. It calls the
Terminate method of each Cell class contained in the collection to destroy
the cross-reference between the classes.

Listing 7-16 The Terminate Method in the CCells Class Module

Public Sub Terminate()

Dim clsCell As CCell

For Each clsCell In mcolCells

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 183

clsCell.Terminate

Set clsCell = Nothing

Next clsCell

Set mcolCells = Nothing

End Sub

The code in Listing 7-17 is added to the CreateCellsCollection procedure
in the MEntryPoints module.

Listing 7-17 The CreateCellsCollection Procedure in the MEntryPoints Module

Public Sub CreateCellsCollection()

Dim clsCell As CCell

Dim rngCell As Range

‘ Remove any existing instance of the Cells collection

If Not gclsCells Is Nothing Then

gclsCells.Terminate

Set gclsCells = Nothing

End If

Set gclsCells = New CCells

Set gclsCells.Worksheet = ActiveSheet

For Each rngCell In ActiveSheet.UsedRange

gclsCells.Add rngCell

Next rngCell

End Sub

If CreateCellsCollection finds an existing instance of gclsCells it executes
the object’s Terminate method before setting the object to Nothing. The
gclsCells Terminate method iterates through all the objects in the collec-
tion and executes their Terminate methods.

In a more complex object model with more levels you could have
objects in the middle of the structure that contain both child and parent
references. The Terminate method in these objects would need to run the
Terminate method of each of its children and then set its own Parent prop-
erty to Nothing.

184 Chapter 7 Using Class Modules to Create Objects

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 184

Raising Events 185

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

Creating a Trigger Class
Instead of raising the ChangeColor event in the CCells class module we
can set up a new class module to trigger this event. Creating a trigger class
gives us the opportunity to introduce a more efficient way to highlight our
Cell objects. We can create four instances of the trigger class, one for each
cell type, and assign the appropriate instance to each Cell object. That
means each Cell object is only sent a message that is meant for it, rather
than hearing all messages sent to all Cell objects.

The trigger class also enables us to eliminate the Parent/Child rela-
tionship between our CCells and CCell classes, thus removing the require-
ment to manage cross-references. Note that it is not always possible or
desirable to do this. The code shown in this section is contained in the
Analysis6.xls workbook in the \Concepts\Ch07 – Using Class Modules to
Create Objects folder on the CD that accompanies this book.

Listing 7-18 shows the code in a new CTypeTrigger class module. The
code declares the ChangeColor event, which now only needs one argu-
ment to specify whether color is turned on or off. The class has Highlight
and UnHighlight methods to raise the event.

Listing 7-18 The CTypeTrigger Class Module

Option Explicit

Public Event ChangeColor(bColorOn As Boolean)

Public Sub Highlight()

RaiseEvent ChangeColor(True)

End Sub

Public Sub UnHighlight()

RaiseEvent ChangeColor(False)

End Sub

Listing 7-19 contains the changes to the CCell class module to trap the
ChangeColor event raised in CTypeTrigger. Depending on the value of
bColorOn, the event procedure runs the Highlight or UnHighlight
methods.

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 185

Listing 7-19 Changes to the CCell Class Module to Trap the ChangeColor Event of
CTypeTrigger

Option Explicit

Private muCellType As anlCellType

Private mrngCell As Excel.Range

Private WithEvents mclsTypeTrigger As CTypeTrigger

Property Set TypeTrigger(clsTrigger As CTypeTrigger)

Set mclsTypeTrigger = clsTrigger

End Property

Private Sub mclsTypeTrigger_ChangeColor(bColorOn As Boolean)

If bColorOn Then

Highlight

Else

UnHighlight

End If

End Sub

Listing 7-20 contains the changes to the CCells module. An array variable
maclsTriggers is declared to hold the instances of CTypeTrigger. The
Initialize event redimensions maclsTriggers to match the number of cell
types and the For...Each loop assigns instances of CTypeTrigger to the
array elements. The Add method assigns the correct element of
maclsTriggers to each Cell object according to its cell type. The result is
that each Cell object listens only for messages that apply to its own cell
type.

Listing 7-20 Changes to the CCells Class Module to Assign References to CTypeTrigger to
Cell Objects

Option Explicit

Public Enum anlCellType

anlCellTypeEmpty

anlCellTypeLabel

anlCellTypeConstant

anlCellTypeFormula

End Enum

Private mcolCells As Collection

186 Chapter 7 Using Class Modules to Create Objects

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 186

Raising Events 187

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

Private WithEvents mwksWorkSheet As Excel.Worksheet

Private maclsTriggers() As CTypeTrigger

Private Sub Class_Initialize()

Dim uCellType As anlCellType

Set mcolCells = New Collection

‘ Initialise the array of cell type triggers,

‘ one element for each of our cell types.

ReDim maclsTriggers(anlCellTypeEmpty To anlCellTypeFormula)

For uCellType = anlCellTypeEmpty To anlCellTypeFormula

Set maclsTriggers(uCellType) = New CTypeTrigger

Next uCellType

End Sub

Public Sub Add(ByRef rngCell As Range)

Dim clsCell As CCell

Set clsCell = New CCell

Set clsCell.Cell = rngCell

clsCell.Analyze

Set clsCell.TypeTrigger = maclsTriggers(clsCell.CellType)

mcolCells.Add Item:=clsCell, Key:=rngCell.Address

End Sub

Public Sub Highlight(ByVal uCellType As anlCellType)

maclsTriggers(uCellType).Highlight

End Sub

Public Sub UnHighlight(ByVal uCellType As anlCellType)

maclsTriggers(uCellType).UnHighlight

End Sub

Private Sub mwksWorkSheet_BeforeDoubleClick(_

ByVal Target As Range, Cancel As Boolean)

If Not Application.Intersect(Target, _

mwksWorkSheet.UsedRange) Is Nothing Then

Highlight mcolCells(Target.Address).CellType

Cancel = True

End If

End Sub

Private Sub mwksWorkSheet_BeforeRightClick(_

ByVal Target As Range, Cancel As Boolean)

If Not Application.Intersect(Target, _

mwksWorkSheet.UsedRange) Is Nothing Then

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 187

UnHighlight mcolCells(Target.Address).CellType

Cancel = True

End If

End Sub

Private Sub mwksWorkSheet_Change(ByVal Target As Range)

Dim rngCell As Range

Dim clsCell As CCell

If Not Application.Intersect(Target, _

mwksWorkSheet.UsedRange) Is Nothing Then

For Each rngCell In Target.Cells

Set clsCell = mcolCells(rngCell.Address)

clsCell.Analyze

Set clsCell.TypeTrigger = _

maclsTriggers(clsCell.CellType)

Next rngCell

End If

End Sub

Practical Example

We illustrate the use of class modules in our PETRAS example applica-
tions by providing both the Time Sheet and Reporting applications with
Excel application-level event handlers.

PETRAS Time Sheet
The addition of an application-level event handling class to our PETRAS
time sheet application will make two significant changes. First, it will allow
us to convert the time entry workbook into an Excel template. This will
simplify creation of new time entry workbooks for new purposes as well as
allow multiple time entry workbooks to be open at the same time. Second,
the event handler will automatically detect whether a time entry workbook
is active and enable or disable our toolbar buttons accordingly. Table 7-1
summarizes the changes made to the PETRAS time sheet application for
this chapter.

188 Chapter 7 Using Class Modules to Create Objects

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 188

Practical Example 189

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

The Template
When a template workbook is added using VBA, a new, unsaved copy of
the template workbook is opened. To create a template workbook from a
normal workbook, choose File > Save As from the Excel menu and select
the Template entry from the Save as type drop-down. As soon as you select
the Template option Excel unhelpfully modifies the directory where you
are saving your workbook to the Office Templates directory, so don’t for-
get to change this to the location where you are storing your application
files.

Once we begin using a template workbook, the user has complete con-
trol over the workbook filename. We can determine whether a given work-
book belongs to us by checking for the unique named constant
“setIsTimeSheet” that we added to our template workbook for this purpose.

A template workbook combined with an application-level event han-
dler allows us to support multiple instances of the time entry workbook
being open simultaneously. This might be needed, for example, if there is
a requirement to have a separate time sheet for each client or project.

Moving to a template user interface workbook also requires that we
give the user a way to create new time sheet workbooks, since it is no
longer a simple matter of opening and reusing the same fixed time sheet
workbook over and over. In Figure 7-2, note the new toolbar button
labeled New Time Sheet. This button allows the user to create new
instances of our template.

Table 7-1 Changes to PETRAS Time Sheet Application for Chapter 7

Module Procedure Change

PetrasTemplate.xlt Changes the normal workbook into a template
workbook

CAppEventHandler Adds an application-level event handling class
to the add-in

MEntryPoints NewTimeSheet New procedure to create time sheets from the
template workbook

MopenClose Auto_Open Removes time sheet initialization logic and
delegates it to the event handling class

MsystemCode Moves all time entry workbook management
code into the event handling class

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 189

As shown in Listing 7-21, the code run by this new button is simple.

Listing 7-21 The NewTimeSheet Procedure

Public Sub NewTimeSheet()

Application.ScreenUpdating = False

InitGlobals

Application.Workbooks.Add gsAppDir & gsFILE_TIME_ENTRY

Application.ScreenUpdating = True

End Sub

We turn off screen updating and call InitGlobals to ensure that our global
variables are properly initialized. We then simply add a new workbook
based on the template workbook and turn screen updating back on. Rather
than opening PetrasTemplate.xlt, a new copy of PetrasTemplate.xlt, called
PetrasTemplate1 is created. Each time the user clicks the New Time Sheet
button she gets a completely new, independent copy of PetrasTemplate.xlt.

The act of creating a new copy of the template triggers the NewWorkbook
event in our event handing class. This event performs all the necessary actions
to initialize the template. This event procedure is shown in the next section.

The Application-Level Event Handler
Within our application-level event handling class we encapsulate many of
the tasks previously accomplished by procedures in standard modules. For
example, the MakeWorksheetSettings procedure and the
bIsTimeEntryBookActive function that we encountered in Chapter 5,
“Function, General, and Application-Specific Add-ins,” are now both pri-
vate procedures of the class.

We describe the layout of the class module and then explain what the
pieces do, rather than showing all the code here. You can examine the code
yourself in the PetrasAddin.xla workbook of the sample application for this
chapter on the CD and are strongly encouraged to do so.

190 Chapter 7 Using Class Modules to Create Objects

FIGURE 7-2 The PETRAS toolbar with the New Time Sheet button

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 190

Practical Example 191

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

Module-Level Variables

Private WithEvents mxlApp As Excel.Application

Class Event Procedures

Class_Initialize
Class_Terminate
mxlApp_NewWorkbook
mxlApp_WorkbookOpen
mxlApp_WindowActivate
mxlApp_WindowDeactivate

Class Method Procedures

SetInitialStatus

Class Private Procedures

EnableDisableToolbar
MakeWorksheetSettings
bIsTimeEntryBookActive
bIsTimeEntryWorkbook

Because the variable that holds a reference to the instance of the
CAppEventHandler class that we use in our application is a public vari-
able, we use the InitGlobals procedure to manage it. The code required to
do this is shown in two locations.

In the declarations section of the MGlobals module:

Public gclsEventHandler As CAppEventHandler

In the InitGlobals procedure:

’ Instantiate the Application event handler

If gclsEventHandler Is Nothing Then

Set gclsEventHandler = New CAppEventHandler

End If

The InitGlobals code checks to see whether the public
gclsEventHandler variable is initialized and initializes it if it isn’t.

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 191

InitGlobals is called at the beginning of every non-trivial entry point pro-
cedure in our application, so if anything causes our class variable to lose
state, it will be instantiated again as soon as the next entry point procedure
is called. This is a good safety mechanism.

When the public gclsEventHandler variable is initialized, it causes the
Class_Initialize event procedure to execute. Inside this event procedure
we initialize the event handling mechanism by setting the class module-
level WithEvents variable to refer to the current instance of the Excel
Application, as follows:

Set mxlApp = Excel.Application

Similarly, when our application is exiting and we destroy our
gclsEventHandler variable, it causes the Class_Terminate event procedure
to execute. Within this event procedure we destroy the class reference to
the Excel Application object by setting the mxlApp variable to Nothing.

All the rest of the class event procedures, which are those belonging to
the mxlApp WithEvents variable, serve the same purpose. They “watch”
the Excel environment and enable or disable our toolbar buttons as appro-
priate when conditions change.

Disabling toolbar buttons when they can’t be used is a much better
user interface technique than displaying an error message when the user
clicks one under the wrong circumstances. You don’t want to punish users
(that is, display an error message in response to an action) when they can’t
be expected to know they’ve done something wrong. Note that we always
leave the New Time Sheet and Exit PETRAS toolbar buttons enabled. Users
should always be able to create a new time sheet or exit the application.

In addition to enabling and disabling the toolbar buttons, the
mxlApp_NewWorkbook and mxlApp_WorkbookOpen event procedures
detect when a time entry workbook is being created or opened for the first
time, respectively. At this point they run the private
MakeWorksheetSettings procedure to initialize that time entry workbook.
All the mxlApp event procedures are shown in Listing 7-22. As you can
see, the individual procedures are simple, but the cumulative effect is
powerful.

Listing 7-22 The mxlApp Event Procedures

Private Sub mxlApp_NewWorkbook(ByVal Wb As Workbook)

If bIsTimeEntryWorkbook(Wb) Then

EnableDisableToolbar True

MakeWorksheetSettings Wb

192 Chapter 7 Using Class Modules to Create Objects

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 192

Practical Example 193

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

Else

EnableDisableToolbar False

End If

End Sub

Private Sub mxlApp_WorkbookOpen(ByVal Wb As Excel.Workbook)

If bIsTimeEntryWorkbook(Wb) Then

EnableDisableToolbar True

MakeWorksheetSettings Wb

Else

EnableDisableToolbar False

End If

End Sub

Private Sub mxlApp_WindowActivate(ByVal Wb As Workbook, _

ByVal Wn As Window)

‘ When a window is activated, check to see if it belongs

‘ to one of our workbooks. Enable all our toolbar controls

‘ if it does.

EnableDisableToolbar bIsTimeEntryBookActive()

End Sub

Private Sub mxlApp_WindowDeactivate(ByVal Wb As Workbook, _

ByVal Wn As Window)

‘ When a window is deactivated, disable our toolbar

‘ controls by default. They will be re-enables by the

‘ WindowActivate event procedure if required.

EnableDisableToolbar False

End Sub

The full power of having an event handling class in your application is dif-
ficult to convey on paper. We urge you to experiment with the sample
application for this chapter to see for yourself how it works in a live setting.
Double-click the PetrasAddin.xla file to open Excel and see how the appli-
cation toolbar behaves. Create new time sheet workbooks, open non-time
sheet workbooks, and switch back and forth between them. The state of
the toolbar will follow your every action.

It is also educational to see exactly how much preparation the applica-
tion does when you create a new instance of the time sheet workbook.
Without the PetrasAddin.xla running, open the PetrasTemplate.xlt work-
book and compare how it looks and behaves in its raw state with the way it
looks and behaves as an instance of the time sheet within the running
application.

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 193

PETRAS Reporting
By adding a class module to handle application-level events to the
PETRAS Reporting application, we can allow the user to have multiple
consolidation workbooks open at the same time and switch between them
using the new Window menu, as shown in Figure 7-3.

194 Chapter 7 Using Class Modules to Create Objects

Table 7-2 summarizes the changes made to the PETRAS time sheet
application for this chapter. Rather than repeat much of the previous few
pages, we suggest you review the PetrasReporting.xla workbook to see
exactly how the multiple-document interface has been implemented.

FIGURE 7-3 The PETRAS Reporting menu bar with the new Window menu

Table 7-2 Changes to PETRAS Reporting Application for Chapter 7

Module Procedure Change

CAppEventHandler Adds an application-level event handling
class to the application to manage
multiple consolidation workbooks.

MCommandBars SetUpMenus Adds code to create the Window menu.

MSystemCode Adds procedures to add, remove, and
place a tick mark against an item in the
Window menu.

MEntryPoints MenuWindowSelect New procedure to handle selecting an
item within the Window menu. All
Window menu items call this routine.

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 194

Summary 195

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

Summary

You use class modules to create objects and their associated methods,
properties, and events. You can collect child objects in a parent object so
that you can create a hierarchy of objects to form an object model. You can
use class modules to trap the events raised by other objects including the
Excel application. You can also define and raise your own events in a class
module.

When you set up cross-references between parent and child objects so
that each is aware of the other you create a structure that is not simple to
remove from memory when it is no longer useful. You need to add extra
code to remove these cross-references.

Class modules are a powerful addition to a developer’s toolkit. The
objects created lead to code that is easier to write, develop, maintain, and
share than traditional code. Objects are easy to use because they encapsu-
late complex code in a form that is accessible. All you need to know to use
an object are its methods, properties, and events. Objects can be shared
because the class modules that define them are encapsulated (self-con-
tained) and therefore transportable from one project to another. All you
need to do is copy the class module to make the object available in anoth-
er project.

As a developer you can easily add new methods, properties, and events
to an object without changing the existing interface. Your objects can
evolve without harming older systems that use them. Most developers find
class modules addictive. The more you use them, the more you like them
and the more uses you find for them. They are used extensively through-
out the rest of this book.

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 195

007_0321508793_ch07.qxp 4/10/09 4:43 PM Page 196

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

